Web Version of the

Roundabout Simulation Model

Per Garder
Bryan Pearce
University of Maine

Final Report

Year 13 (00/01)
Project No. UMEE13-9

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

P _vii reparting burden for this collection of information is estimated 1o avecage | nour pef 22sporse, nduding the time for reviewng instructions, yearcning existing data 5ources
enng and maintaining the data needea, and completing ana reviewing the ccliectinn finfarmaton Sena comments regarding this burden estimate or any ather aspect of trs
woizction stinformation, including suggestions for reduang this burden, 1o Washingt i rieasauarters Secvices, Uirectorate for information Operations and Reports, 1215 jetferson
Cavis ighway, Suite 1204, Arlington, VA 22202-4302. and to the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

2. REPORT DATE
June 24, 2002

i. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED

Sept 00 — Aug 01

4. TITLE AND SUBTITLE

Web Version of the Roundabout Simulation Model

6. AUTHOR(S)

Per Gérder and Bryan Pearce, University of Maine

5. FUNDING NUMBERS

DTRS99-G-0001

PB2002-106717

0 R R

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Maine, Department of Civil and Environmental Engineering
Orono, ME 04469-5711

8. PERFORMING ORGANIZATION
s REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
New England (Region One) UTC
Massachusetts Institute of Technology —
77 Massachusetts Avenue, Room 1-235 g
Cambridge, MA 02139

10. SPONSORING /MONITORING
Final Report Xear N3NSept 00-
Aug 01), Project No. UMEE13-9

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT (MaximL{m 200 words)

modifications.

This report describes work done on a roundabout animation program during 2000 and 2001. The roundabout
animation program began as an undergraduate class project and was presented in February 1998 in the New
England University Transportation Center report “Animation of Traffic through Roundabouts.” A second report,
“A Roundabout Animation” was presented in June 2000. Undergraduate students were involved in all of these

The program is based on the principle of an autonomous agent. The cars are programmed to speed up, to
slow down, and to enter the roundabout based on an acceptable gap length. That is, the gap between
themselves and the cars around them. The actual gap is compared to an allowed gap that is based on vehicle
speed and assumed driver response time. If necessary, the vehicle speed is adjusted. The cars travel through
the roundabout following a randomly assigned path. Traffic flow values may be input into the program
manually during initialization. During simulation, the cars enter and exit randomly based on these values.
After the simulation, traffic count data and average delay data may be displayed. The latest version has
improved input/output modules, is better calibrated against field data, has had some illogical behavior
elintinated and is now available on the web through the address www.umeciv.maine.edu/brp/Roundabout.

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89%:
Prescriped by ANSE Sta J39-08

REEESEREOp

Technical Report Documentation Page

1. Report No.

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitie

A Roundabout Animation

5. Report Date

June 24, 2002

6. Performing Organization Code

7. Author(s)

Per Gérder, Bryan Pearce

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Maine

Department of Civil and Environmental Engineering
Orono, ME 04469-5711

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
DTRS99-G-0001

12. Sponsoring Agency Name and Address

New England (Region One) UTC
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 1-235
Cambridge, MA 02139

13. Type of Report and Period Covered
Final Report
Year 13 (Sept 00 - Aug 01)

14. Sponsoring Agency Code

15. Supplementary Notes
Supported by a grant from the US Department of

Transportation, University Transportation Centers Program

16. Abstract

This report describes work done on a roundabout animation program during 2000 and 2001. The round-
about animation program began as an undergraduate class project and was presented in February 1998 in the
New England University Transportation Center report “Animation of Traffic through Roundabouts.” A sec-
ond report, “A Roundabout Animation” was presented in June 2000. Undergraduate students were involved
in all of these modifications.

The program is based on the principle of an autonomous agent. The cars are programmed to speed
up, to slow down, and to enter the roundabout based on an acceptable gap length. That is, the gap between
themselves and the cars around them. The actual gap is compared to an allowed gap that is based on vehicle
speed and assumed driver response time. If necessary, the vehicle speed is adjusted. The cars travel
through the roundabout following a randomly assigned path. Traffic flow values may be input into the pro-
gram manually during initialization. During simulation, the cars enter and exit randomly based on these
values. After the simulation, traffic count data and average delay data may be displayed. The latest version
has improved input/output modules, is better calibrated against field data, has had some illogical behavior
eliminated and is now available on the web through the address www.umeciv.maine.edu/brp/Roundabout.

17. Key Words
Roundabout, traffic circle, simulation, animation, delay

18. Distribution Statement

19. Security Classif. (of this report)

20. Security Classif. (of this page) 21. No. of Pages 22. Price

22

Form DOT F 1700.7

Reproduction of form and completed page is authorized

Abstract

This report describes work done on a roundabout animation program during 2000 and
2001. The roundabout animation program began as an undergraduate class project and
was presented in February 1998 in the New England University Transportation Center
report “Animation of Traffic through Roundabouts.” A second report, “A Roundabout
Animation” was presented in June 2000. Undergraduate students were involved in all of
these modifications.

The program is based on the principle of an autonomous agent. The cars are pro-
grammed to speed up, to slow down, and to enter the roundabout based on an acceptable
gap length. That is, the gap between themselves and the cars around them. The actual
gap is compared to an allowed gap that is based on vehicle speed and assumed driver re-
sponse time. If necessary, the vehicle speed is adjusted. The cars travel through the
roundabout following a randomly assigned path. Traffic flow values may be input into
the program manually during initialization. During simulation, the cars enter and exit
randomly based on these values. After the simulation, traffic count data and average de-
lay data may be displayed. The latest version has improved input/output modules, is bet-
ter calibrated against field data, has had some illogical behavior eliminated and is now
available on the web through the address www.umeciv.maine.edu/brp/Roundabout.

Acknowledgement

We want to thank everybody involved in this project. This includes numerous
undergraduate students who during class time suggested methods and procedures for how
traffic through roundabouts can be simulated and animated. We particularly want to
mention Josh Olund for collecting field data and helping analyze code more in-depth than
other students.

We also want to acknowledge the New England University Transportation Center
for funding this work. The original funding source is U.S. Department of Transportation.

Web Version of the Roundabout Simulation Model

An Education Project

General
When traffic volumes at an intersection increase to a point where the travel time through
it becomes long, or to a point where the intersection becomes unsafe, something should
be done to improve the situation. Usually in the United States, the solution is to use a
traffic light. However, this does not always solve the delay problem. And, the safety is
often improved only marginally. If done right, a roundabout can be a more efficient and
safer solution than signalization.' 2

This report is an update of an ongoing project of the University of Maine Round-
about Model (UMRoM). It describes work done on the roundabout animation program
during 2000 and 2001. This animation work started in 1996 as a homework assignment
for CIE 115, Computers In Civil Engineering. It was then embraced by one of the stu-
dents who helped it a few more steps in evolution. The original system has been retained
with changes and additions to increase the realism of the modeled traffic. The first report
in this series was presented in February 1998 in the New England University Transporta-
tion Center report “Animation of Traffic through Roundabouts.” A second report, “A
Roundabout Animation,” was presented in June 2000. The program development started
with the roundabout as a simple octagon, centered in the window. From there, it has pro-
gressed to a circle with entrances and exits. We have now simulated the Gorham Round-
about constructed in 1997 and a couple of yet not built roundabouts. The later versions
of UMRoM include a feature to easily allow the setup for any roundabout with six or less
entrance approaches and six or less ‘exits’ in any order or combination.

The program is based on the principle of an autonomous agent. When the pro-
gram is initially set up, each car (the agent) is assigned a set of characteristics that help to
define how it should act as it travels through the roundabout. Each vehicle then follows
the traffic ‘laws,” according to those characteristics. The cars are programmed to speed
up, to slow down, and to enter the roundabout based on an acceptable gap length. That
is, the gap between themselves and the cars around them. The actual gap is compared to
an allowed gap that is based on vehicle speed and assumed driver response time. If nec-
essary, the vehicle speed is adjusted. The cars travel through the roundabout following a
randomly assigned path. Traffic flow values may be input into the program manually
during initialization. Since actual traffic data changes from day to day, and from rush
hour to nighttime, we have designed the program to allow the user to easily edit the traf-

1 Retting, Richard, 1996. Urban Motor Vehicle Crashes and Potential Countermeasures. Transportation
Quarterly 50/3:19-31.

2 Schoon, C.C,, and J. Van Minnen, 1993. Accidents on Roundabouts. R-93-16 SWOV - Stichting
Wetenschappelijk Onderzoek Verkeersveiligheid. The Netherlands.

3 Ourston, Leif, 1994. Nonconforming Traffic Circle Becomes Modern Roundabout. Leif ourston and
Associates, Santa Barbara, California, 93111.

4 Jorgensen, Else, and N. O. Jorgensen, 1994, Safety of 82 Danish Roundabouts. Report 4 - IVTB, Danish
Technical University.

Gérder, Per, 1999. Little Falls, Gorham—Reconstruction to a Modern Roundabout, TRRecords No.
1658 Highway Geometric Design and Operational Effect Issues, pp 17 -24.

fic flow data. During simulation, the cars enter and exit randomly based on these values.
The program simulates the traffic flow by calculating the vehicle movement in discrete
time steps. With each repetition, or timestep, a certain amount of “model time” passes.
A variable, deltaT, holds the value of this time step, for example 0.5 seconds. The user
can set the simulated time and a data recording time. The traffic simulator shows the ve-
hicles moving along their appropriate paths. The user can also view the “traffic counts”
generated by the program. These counts can be converted to vehicles per hour when the
simulation is complete), as well as its average time that the cars are in the simulation.
Other options allow the user to view all paths, and to have the model operate one step at a
time. After the simulation, traffic count data and average delay data may be displayed.
And the output of the model includes a continuous real-time animation showing vehicle
movements. This includes showing the vehicles’ arrival according to randomized proc-
esses based on arrival rates per approach and turn frequencies, the queuning of vehicles on
each approach, the entering onto the circulatory lane based on gap acceptance theory, as
well as the circulatory and departure processes. Driving speeds are chosen based on de-
sired speeds of that particular autonomous agent combined with queuing theory, i.e., dis-
tance to vehicle ahead and its speed. The model’s input and output modules have gradu-
ally been improved and the model has been calibrated against real traffic at the Gorham
roundabout. Improvements were especially made with respect to the setup procedure for
new locations and for differing geometric layouts. The latest version has improved in-
put/output modules, is better calibrated against field data, has had some illogical behavior
climinated and is now available on the web through the address
www.umeciv.maine.edu/brp/Roundabout. It is not commercially available in any other
way. This was accomplished by involving our undergraduates—in the Civil Engineering
computer class CIE115 as well as in the Transportation Engineering class CIE 225. The
class “Computers for Civil Engineering,” which has been taught by Bryan Pearce and
Will Manion, has had the students work on this module by module. A byproduct of this
work has been to stimulate civil engineering majors to specialize in the transportation
sector.

Some further details about how this simulation model works are discussed in the
following pages.

House Rules

Prior to writing the program, a set of rules were defined that would describe how vehicles
behave. First, how could we keep the vehicles from crashing into one another? How is it
done in real life situations? Drivers adjust their speed to match that of the car in front of
them. Therefore, they will decelerate as soon as they feel they are in danger of hitting
that car. Different drivers will do this at different times, depending on how fast they are
going. We developed a system such that if a car follows another too closely, then the car
in back, or the backcar, will slow.

Merging with traffic at a yield was studied and a system was advanced. We used
gap and lag for the model. Lag is called into effect when a car has open road ahead of it
and has a car that it might have to yield to.
The time it will take for the car on the left
to reach the intersection is lag. Gap is a
time gap between two cars in the stream o
of traffic that we are yielding to. On av-
erage lag is smaller than gap. When the
actual lag or gap is larger than desired the |
car at the yield will merge.

Next, we needed to decide how the 7 :
cars would enter the simulation, and
where they would enter the simulation.
Based on traffic volumes the cars are ran-
domly entered into the simulation. This
also depen_ds on the physical space avail-
able, that is, a car may not occupy an al-
ready occupied space. Once the cars en-
ter, how do they know where to go? In
real life, a driver usually knows his or her

destination, we randomly assign each car a specific exit, based on traffic volume. This
will be explained further in AddCars.

Figure 1 — Coordinate System

Coordinate System

The coordinate system used is a standard Cartesian, ranging from —200 * scale feet to
200 * scale feet in both directions (see Figure 1). The scale is defined in the sister pro-
gram used to prepare the simulation for any given roundabout.

Setup

In the previous version of UMRoM the roundabout and its segments were “hard wired”
into the program. That is each value was measured, by hand, and then typed into the
code. This process was laborious as well as extremely time consuming. To make the
model more useful a sister program was created which allows for rapid setup of any new
roundabout (See Figure 2). The program allows the user to load any picture and then
click on the picture to place the points that define the segments that the cars follow.

The roundabout setup program allows the user to accomplish many things from
telling the program where the roads are to naming the roads. The user may load any
standard picture of a roundabout into the program. From here, they are able to pick

pOilltS over the unaul setup :Gorham
roads in the pic- = =
ture. To make
editing the setup
smoother the user
is also able to de-
lete or move
points. Points are
defined by clicking
with the mouse. A
segment joins two
points and has a
direction. To make
a segment, the user &
clicks on the first &
point of the seg-
ment and then the £
second. The first | g
point of a segment |
would be defined §
by the simple idea
that that point
would be the first
point in the seg-
ment that the car
would pass over.
As with points, the program allows for the removal of segments.

Setups can be saved either in progress or when completed. All setups for the
roundabout may be loaded thorough simple save and load dialogue boxes, similar to the
ones used to open a file in Microsoft Word. More options are available to the user, such
as being able to control the appearance of points, segments, and their labels. One may
also make segments and/or points invisible.

Once the segments are placed, the program finds all the possible paths for the traf-
fic flow. The program first finds segments that have a beginning point that does not co-
incide with the end-point of a different segment. Therefore, that segment must be an en-
trance into the system. From here, the routine takes that segment and finds another seg-
ment that has a starting point that is the same as the first end point. The algorithm will
continue to cycle this way from segment to segment and keep track of each path found.
When there are two segments branching from an end-point, a routine is used to find
which segment is on the right. The path is copied and we continue on to the right seg-
ment. The right segment is the segment that then would be the exit of the roundabout (as-
suming right hand drive).

Figure 2 — Setup Form

The process for finding the right segment is done using vector cross products.
First, we define the two segments as vectors. Then if we cross the right with the left the
resulting vector will be positive. Along with checking for two segments that start from
one segment, two segment with a single endpoint (a yield) are also located. The program
will again use cross products to find which segment is on the right. This is done to find
which of the two segments have to yield.

Once a path is completed, our algorithm will find the next path from the same ori-
gin. This is where the copy of the last path is used. Starting from the segment on the left
(we took the right last time), we continue looking for “next” segments as before. The
program finds all paths until a 360° circuit of the roundabout has been completed. It will
discard the redundant path just found move 1
on to the next entrance segment. The cycle
continues and stops once all the starting
segments have been used.

Now that all the paths have been
found the user can then review all of the
paths and remove all of the invalid paths.
An example of an invalid path is given in
Figure 3. A driver must follow the (red)
dotted arrow and not the path shown. The
user can decide to remove this incorrect
path. Now the operator of the program
must click on the “set path names” button
to name all of the entrances and exits. At
this point the user is almost done, all that is
left is for the user to set the scale of the S :
drawing by clicking on two points of the Figure 3 — An Invalid Path
map and stating how far apart they are.

Once the process of setting up the roundabout is done the user clicks the “create round-
about files” button and the information is saved.

The Files

There are four files created by the setup program. They all have the name given by the
user but they have different extensions. They are pth, pts, seg, and set. These abbrevia-
tions stand for path, points, segments, and segment setup respectively. The path file
holds information of how many entrance and exit segments are in the simulation. In
addition, this file contains the names of the entrance segments and exit segments. These
will be the road and highway names appearing on a real simulation. The last information
within this file is combinations of entrances and exits for each path. This data is used to
retain the list of segments for each path.

The point file holds the name of the picture that is used for the map and the loca-
tion of the point used in the simulation. A segment is defined by two “points.” These
locations are in the Cartesian system as described earlier. The segment file is a list of the
ordered numbers of the points and the associated segments. The scale is saved in the
segment setup file. Along with scale, the .seg files holds additional information for every
segment. The information is stored in the format NextSegL, NextSegR, followed by the

five segments called LeftSegs(1) to LeftSegs(5). These variables will be explained later
in this paper.

Code — The Rules in Depth

General Declarations —

Before we get too involved in the explanation of the code, we should describe what vari-
ables are being used and why. For those who read this in color, green italic annotation is
original to the code; blue annotation has been added for clarification.

Private Type Point ‘this is a variable type defined by us to hold the x and y coor-
dinates of the endpoints of the segments

x As Single ‘the x coordinate

y As Single ‘the y coordinate
End Type

Private Type segment ‘The paths are several linked segments
carsIn(20) As Integer 'list of cars in each segment — last car first
totCars As Integer 'number of cars in a segment
endPt As Integer 'index of segment ending point
startPt As Integer 'index of beginning point of segment

leftSegs(5) As Integer ‘when entering the circle look for cars on the five
segments to the left

nextSegL As Integer 'index of next segment continuing in circle - "0" if
none

nextSegR As Integer 'index of next segment leaving circle - "0" if none
End Type

Private Type Car ‘this type defines the properties of the cars

type As String 'Type of auto. car, bus or truck

accel As Single 'car's rate of acceleration

active As Boolean 'if a car is being used or not

color As Long ‘the car’s color

colort As String ‘the name of the car’s color

deSpeed As Single 'desired speed or how fast the car “wants” to go

length As Single ‘the car’s length

width As Single ‘the car’s width

locationf As Single ‘location of car’s front in the segment

locationb As Single 'location of car’s back in the segment

new As Boolean ‘if this is true the program will know not to “erase” the
car after the first time step

nextsegf As Integer 'mext segment car front is headed for

nextsegb As Integer 'next segment car back is headed for

"_1" for an exit segment and "0" if not assigned yet
segmentf As Integer 'mumber of the segment car’s front is on

10

segmentb As Integer ‘number of the segment car’s back is on

speed As Single ‘actual speed

exit As Integer ‘assigned exit segment

begintime As Single 'time the car enters

entrance As Integer 'segment the car enters on

carspeedup As Integer for debugging

lag As Single ‘lag data for entering circle

gap As Single "Minimum accepted gap

Follow As Single 'Follow-up value

Tail As Single 'How close a car will get to the one in front of it

yield As Boolean 'Tells if the car is yielding

YieldTime As Single ‘The time a car starts to yield, for measuring how
long a car yields

CarsYielded As Integer ‘Number times the car has been through the yield
process
End Type

Private myPts(200) As Point ‘array of points

Private mySegs(100) As segment 'array of segments

Private myCars(100) As Car ‘array of cars

Private oldFront(100) As Point, oldBack(100) As Point ‘these hold the old posi-
tions of the cars

Private numCars As Integer 'number of cars

Private numSegs As Integer mumber of segments

Private deltaT As Single, yieldPt As Single ‘the time that passes each timestep,
the point where the cars “look” to enter the circle

Private black As Long ‘the color black

Private carFront As Point, carBack As Point ‘endpoints of the cars

Dim TimeSteps As Long 'number of timesteps

Dim PutCarInNow(6) As Single ‘the probability that a car will enter

Dim counter(6, 6) As Integer 'keeps track of the mean delay time

Dim TimeHolder As Single ‘keeps track of when to add a car

Dim frontcar As Integer, backcar As Integer 'these six variables are used to con-
trol speed, the car in front, the car in question

Dim thisseg As Integer, nextseg As Integer ‘the segment backcar is on, the seg-
ment it 1s going to

Dim gap As Single, allowedGap As Single ‘the gap between your car (backcar)
and the car in front (frontcar), and minimum gap allowed between them

Dim numpoints As Integer, numsegs As Integer 'number of points and segments
Public roundname As String '‘Name of the roundabout files

Private Startn(6, 6) As Way ‘An array of entrances and exits

Private startname(6) As String 'The names of the entrances of the Roundabout

Private endname(6) As String 'The names of the exits of the roundabout
Public startnum As Integer 'Number of entrances of the roundabout
Public endnum As Integer 'Number of exits of the roundabout

11

Private Turn(6, 6) As Single
making any given turn.

Private scalenum As Single
Private SpeedDif As Single
Private difference As Single
tested intersection

Private path As String

Private Rtime As Single
Private CurrentTime As Single

These, of course, are not all of the vari-
ables used. They are, however, the ma-
jor ones. The others shall be described
as needed.

Initial Code —

When the program starts, a main menu is
displayed (See Figure 4). The operator
is able to choose whether to simulate a
roundabout or prepare a roundabout for |
simulation. After choosing to simulate, a
new form is displayed with only one but-

ton active. That is the Input Data button
on the Simulation form (See Figure 5.).
When this button is clicked, an open dia-
logue box is displayed to allow selection

of the roundabout files. Once the roundabout is picked, the program

Figure 5 — Simulation Form

‘This holds the calculated chance of a vehicle

‘Scale of the roundabout files

'Differences in Current car and car yielding to

'path to where the files are
'For real time calculations

'Differences in the time it will take to get to con-

"The current time of the system

12

Figure 4 — Main Menu

gathers all the in-

formation about
the roundabout
by reading the
appropriate .pth,
.pts, .seg, and
.set files.

The input
data button is
now active and
when that is
clicked a sepa-
rate form comes
up that allows
the controlling
data for the pro-
gram to be ed-
ited. This new
form, frmInput
(see Figure 6),

uses a MSFlexGrid control, and holds the vehicles per hour data for each path. A method
for editing this data, and a way to change the time for which the program will run, or run-
time, as well as the time at which the output data starts recording are also included on this
form. The user may also define the length of a time step, or how much time passes
between
movements of [l
the cars. A [
“real time”
choice has also L . 0 i
been added; 5 ln Mot 5o in Soul Frog 1d Eas
thus, the time |

that passes in
the simulation
is that same as
the time that
passes in the |
real world.
The default §
data is entered ¢
under the
form_load
event, that is,
when the form -
loads into Figure 6 — Input Form
memory.

Once this is finished, the Setup button becomes active (See Figure 5). The code
under (or associated with) this button is fairly straightforward. It initializes variables and
properties to be used later, and it calls procedures that setup the points, and segments.

In PointSetup the program opens the file point.txt and reads in the x and y coordi-
nates for each of the points. EndPointSetup “hardwires” the indexes of the points that
define each segment. SegSetup sets the length property of each segment, and sets the
leftSegs, nextSegL and nextSegR properties. These last two variables help set up the di-
rection in which the traffic will move. They are set up according to the direction of
movement. NextSegR will be the segment on the right, if there is a choice. If there is no
choice, then nextSegR will have the value of zero and nextSegL will be the next segment.
LeftSegs are used to see if there is room to enter the actual circle. If there is a car ap-
proaching the circle and there is another car within the circle to the left of the intersec-
tion, on one of the LeftSegs, then there is no room to enter and the first car must wait.

PathCalculations —

The Setup button also calls the procedure PathCalculations. This procedure implements
the logic that will decide where the cars will enter the circle, when they will enter the cir-
cle, and where they will go once they do. PathCalculations reads the data from the
MSFlexGrid on frmInput (See Figure 6), and, for each entrance, it calculates the prob-
ability that a car would turn in a certain direction. It will also calculate the probability of
cars entering each entrance at each timestep.

13

In computing the probabilities, PathCalculations uses an array that is the number
of entrances by the number of exits. For example, if there were 2 entrances and 3 exits
then the array would be 2 by 3. The “odds” for a path being taken given the entrance is
calculated. The value for 2,1 for example is the simple probability that a car will turn at
the first exit. The value of 2,2 is the simple probability of a car making the second turn
plus the value for the first. The last value, or 2,3 is the simple probability of a car making
the third turn and the value of the second turn, this would be one because this is the last

turn.

This will be elaborated on in the explanation of AddCars. The last step in Path-
Calculations is to originate the PutCarInNow variable for each entrance. The value for
these variables is the probability that a car would enter on the appropriate entrance in any

timestep.

Timer --

Once the code for the Setup
button is finished, the Run but-
ton becomes active. Clicking
this burton enables the Timer,
enables the Stop button, and
disables itself. The Stop button
simply does the opposite of the
Run button. However, the
Timer becomes the central
nervous system of the whole
program (See Figure 7). It calls
the two major components of

!

1==1 ‘keeps track of cars
J =0 ‘keeps track of entrances

IsCari
Available?

i=numCars? Y

!

Add 1 to timesteps

X,
71 Must keep track

Call
procedure
CheckTime
Is it time to
stop?

Call procedures
AddCars and MoveCars
Output current time in
seconds to the Elapsed
Time textbox

One
Step at a Time?

L

Figure 7 - Flowchart for the Timer

y» j=j+1

Call the procedure
CheckProbability

The last
ntrance

The last car.

Figure 8 — Flowchart for AddCars

14

the animation control,
AddCars and MoveCars. If
the Single Step checkbox is
checked then the Timer will
turn itself off and turn the Run
button back on. This will con-
tinue until the box is un-
checked. In addition, the
Timer calls the procedure
CheckTime. This checks to see
if 1t is time to stop the anima-
tion and relevant computa-
tions, and will do so if neces-

sary.

AddCars —

AddCars searches all the cars being used until it finds the first four that are inactive (See
Figure 3). Each car is given a chance to enter one of the four entrances. CheckProbabil-
ity determines if a car will enter or not (See Figure 9). It does so by first returning a ran-
dom number. If this number is less than the appropriate PutCarInNow variable, then
CheckProbability will let the car enter and the procedure EnterNow will be called. When
a vehicle is “allowed in”, the CarSetup routine is called.

CarSetup—

This routine uses the current car in the myCars array and makes sure that the active prop-
erty is set to true. It also sets the type, dimensions, color and desired speed for each car
based on the values given in the traffic statistics window (Figure 10). The operator is al-

) lowed to make traffic that consists of any

—p For 1;:“11 tol exit- percentage of cars, trucks, and buses. Of
course, these various vehicles may have

v Putcarion | different properties depending on their

x = Rnd entrancej | type. Numbers with a mean and standard

a random number going to deviation are randomly assigned based on

a normal distribution. The New Property
is set to true so the program knows that
this is the first time each car will be
Call the drawn.

procedure EnterNow makes the car active
EnterNow | and sets its location to the beginning of
the entrance segment or behind the last car
< on the segment if there are cars that are
off the screen waiting to enter. Next, the
car’s destination is made known using the
FindExit procedure. This is where the

other variables defined in PathCalculations are used.
FindExit is based on the logic that the sum of all the probabilities of a car taking

one of any number of possible paths is one. Remember when finding the values for the
array we kept adding the previous variable to the correct probability to get the next. If we
use a random number generator to get a number between zero and one, we can use these
variables to determine which direction the car will turn. Below is a section of the code
with an example.

Figure 9 — Flowchart for CheckProbability

15

c Statistics

Figure 10 — Traffic Statictics

j = myCars(i).segment ‘the entrance the car is on., let’s say 2

x =Rnd ‘arandom number between 0 and almost 1, let’s say 0.754832
Fork =1 To endnum — 1 ‘endnum in this case will be 3. So k will be 1 then 2.
If X < Turn(j, k) Then ‘first time we are checking turn(2,1) which = .333
‘No .754832 is larger than .333
“The second time we would be checking turn(2,2) which = .666 again < .754832
myCars(i).exit = Startn(j, k).ExitSeg
Exit For
End If

16

Next k
Ifk = endnum Then ‘Yes k =3 and endnum = 3 therefore this is our turn.
myCars(i).exit = Startn(j, k).ExitSeg ‘This sets the segment that the car
‘will take for a right turn.
End If

The saraple car will be turning left. This part has been set up so the exits will be ran-
domly picked, but also they will depend on the vehicles per hour that should follow the
paths. X is found using the Rnd function, a random number generator. If it is less than
turn(j,k) then it will take the exit for startin(j,k).

EnterNow calls the FindNextSegment procedure after executing FindExit. First,

we check to see if there are any seg-
ments beyond the segment that the car
fronts and backs in question are on
(see Figure 11). If there are no seg- Car-Back N
ments then the car’s nextseg property
is set to negative one. Thus, the pro-
gram will remove the car from the g seglength
simulation. Next, we want to know if
there is a choice of going left or right.
If not, the segment’s nextSegl. prop-
erty will become the car’s nextseg
property. However, if there is a
choice, we need to know if this is

nextsegL

/——- Car-Front

nextsegR

A Car Travelling along a Segment

where the car will turn. If the car exits - P Bk
here then nextseg becomes the tgure 11 — Car-Fronts and Backs
nextSegR property; otherwise, it is nextSegl. Interested readers may want to look at the
code:

segin = myCars(i).segmentf 'segment the front of car i is in
If segin =-1 Then ‘The front of our car is out of the simulation and ignore it.
MyCars(I).nextsegf = -1
Elself mySegs(segin).nextSegL = 0 Then "We are on the exit ramp
myCars(i).nextsegf = -1
Elself mySegs(segin).nextSegR = 0 Then ‘There is only one segment in front of
this segment
myCars(i).nextsegf = mySegs(segin).nextSegL
Elself myCars(i).exit = mySegs(segin).nextSegR Then ‘This is the exit the car is
looking for and will take the right turn.
myCars(i).nextsegf = mySegs(segin).nextSegR
Else ‘This is not the car’s exit and will stay in the roundabout.
myCars(i).nextsegf = mySegs(segin).nextSegL
End If

This routine is repeated for the back point of the car as well. This procedure has
worked very well, and has been only slightly modified since the spring course in 1996.

17

The most important of these was in changing how the cars decided to turn off the circle.
In the original homework program, the decision was made by probability within
FindNextSegment. Now the exit is already known, a priori, all we need to do is compare
nextSegR with the exit.

Once we have found the next segment for which we are heading, we need to up-
date the carsIn array. The carsIn array is set up to hold 50 numbers but we have to have
slots for both the fronts of cars and the backs of cars. So, the carsIn array will hold 25
cars. The odd carsIn (carsIn(1), carsIn(3), carsIn(5)...) hold the values of the back of the
car that is in the spot. A zero means no car. The even carsln (carsIn(2), carsIn(4), car-
sIn(6)...) hold the values of the front of a car that is in the spot. When updating the ar-
ray, we move all of the cars in the array to the next two highest slot in the array for ex-
ample (carsIn(1) goes to carsIn(3) and carsIn(2) goes to carsIn(4)) and put our car in slot
one or two.

We now know where the car has entered and where it will exit, and can update the
grid on frmVPH (see Figure 12). EnterNow calls the procedure UpdateOutput to accom-
plish this task. Of course, UpdateOutput will do nothing unless the elapsed time has
reached the time at which data starts recording. When it is time to record data, the proce-
dure enters another nested case statement (this one relies on the car’s entrance and exit)
to determine which cell in the grid to increment by one.

Before the car sl
moves, we must ad-
just the car’s speed
so it will not be
likely to crash into
the car in front of it.
We do this by calling
the procedure Ad-
JustSpeeds. (The
crash rate at a mod- &
en roundabout is |
typically around one
per 2 million entering =
vehicles.® We disre- [
gard this small prob_ - _ . - -
ability in our simula- Figure 12 — Vehicles Per Hour Display
tion, and assume that
cars do not collide when estimating average delays.

The last two steps EnterNow performs are to set the car’s begintime property and
the car’s entrance property. These will be used later in the procedure FindDelayTime.

AdjustSpeeds —

In AdjustSpeeds, we set values to the variables: accel, taken from the acceleration
property of the given car; backcar, car i or the car being controlled (conceptually the car

® Gérder, Per, 1998. Little Falls, Gorham—A Modern Roundabout, Maine Department of Transporta-
tion, Bureau of Planning, Research & Community Services, Transportation Research Division, Final
Report, Technical Report 96-2b.

18

we are in which we are riding); thisseg, the segment backcar is on; and nextseg, the seg-
ment to where backcar is heading. Typical speed and acceleration values have been ob-
tained within this project, and are also presented in separate publications.7 8 The logic for
AdjustSpeeds is given in the flow chart labeled Figure 13.

Set the accel, backcar,
thisseg, and nextseg
variables. ‘the acceleration,

Find position of
backcar’s front

the car in question, the
segment backcar is on, and

in thisseg’s

»| Set the allowedGap

Find a value for
frontcar’s back
‘that’s the car in

carsln array

the segment coming up,
respectively

Y
Find Gap variable

Is gap >
allowed and lag
> allowed?

Speed Up

Slow Down

Is gap <
Allowed

Already
Yielding?

<

Speed Up

Slow Down

Is a allowable

<;ap coming in the

traffic?

Stay Yielding

Speed Up

Figure 13 — Flowchart for AdjustSpeeds

At this point, AdjustSpeeds enters a “do loop” in order to find a value for j. This is the
index of the place of the front of the backcar in the carsln array for thisseg. j becomes

7 Garder, Per , 1998. Little Falls, Gorham—A Modern Roundabout, Maine Department of Transporta-
tion, Bureau of Planning, Research & Community Services, Transportation Research Division, Final
Report, Technical Report 96-2b.

® Modern Roundabout Practice in the United States. A Synthesis of Highway Prac-tice. NCHRP Synthe-
sis 264, TRB, Washington D.C., 1998.

19

useful when trying to find the value of frontcar, the car in front of backcar. Here we set
the values of lookLeftSeg and lookLeftCar. They are used if the car is approaching an
intersection. What happens then will be explained later.

The routine sets the speedup variable to a number from 1 to 4. A 1 means the car
can speed up; a 2 means that the car has to slow down; a 3 means that the car yields to
another car in the roundabout; finally a 4 means that the car is speeding up from a
stopped position. Now, we find the value of allowedGap, using the equation: allow-
edGap = myCars(i).Tail * myCars(backcar).speed + 2. The myCars(i).Tail is the value
taken from car statistics window. myCars(backcar).speed is backcar’s speed. The two is
added because if the speed were 0 the allowed gap would be 0 and that would cause prob-
lems.

Once these variables are defined, we can find the value for the back of the front-
car. First, we check thisseg. Because of the way the carsIn array is set up, we can see if
frontcar is on thisseg by adding one to j and then checking that spot in the array for a
number other than zero. A non-zero number will indicate the back of the frontcar, and
Gap’s value will be the difference of frontcar’s back location and backcar’s front loca-
tion. If there is no car in front of backcar on thisseg, we look to see if nextseg is negative
one, meaning that the car will be leaving the simulation. If this is the case nothing needs
to be done and we can move on. However, if this is not the case, we need to find out how
far ahead the next car is. We do this by calling the aptly named procedure FindFrontCar.

FindFrontCar uses the same variables we have already defined in AdjustSpeeds.
It first initializes the Gap variable with the length of thisseg that backcar has not yet trav-
eled. Then it uses a Do loop to find frontcar. Let us look at the code:

gap = mySegs(thisseg2).length - myCars(backcar).locationf ‘the remaining length
of thisseg

Do ‘the program will loop back to here

frontcar = mySegs(nextseg2).CarsIn(1) ‘the rear of the last car on nextseg
frontcarfront = mySegs(nextseg2).CarsIn(2) ‘the front of the last car on nextseg

If frontcar <> 0 Then °‘is there a car on nextseg?
gap = gap + myCars(frontcar).locationb ‘add the length of nextseg trav-
eled by frontcar if there is one.
Exit Do
Else
gap = gap + mySegs(nextseg2).length ‘add the entire length of nextseg if
there is not.
End If
thisseg2 = nextseg?2 ‘if frontcar wasn’t found we need to find the next nextseg
I[f mySegs(thisseg2).nextSegR = 0 Then ‘this part is just like FindNextSegment
nextseg2 = mySegs(thisseg2).nextSegl.
Elself myCars(backcar).exit = mySegs(thisseg2).nextSegR Then
nextseg? = mySegs(thisseg2).nextSegR
Else
nextseg? = mySegs(thisseg2).nextSegl
End If

20

If nextseg2 = 0 Then gap = 4 * allowedGap + gap ‘to make sure that the gap will

be large and there won’t be abnormal slowing down right before exiting the simulation.
Loop Until gap > allowedGap Or thisseg2 >= 99 ‘keep looking until it doesn’t
matter

The second to last line was added because the cars were slowing prematurely, just before
they got on the last segment before leaving the simulation. As they came close to the be-
ginning of the last segment, the gap would only be a small amount plus the length of the
last segment. Thus, Gap would be smaller than allowedGap, and the car would slow.
Typical values of critical gaps were observed and researched through studies of literature
within this project and integrated into the code.

FindFrontCar was created to find an accurate value for Gap. With this value, we
can now adjust backcar’s speed if necessary. If Gap is less than the allowedGap, we need
to slow backcar and speedup is set to 2. We also must check to see if there is a car to the
left at a yield. If there is a car to the left we find how far away it is. If the car is back fur-
ther than the acceptable lag then we will go faster if we can, speedup = 1. Lag is the time
it takes for a car that one would have to yield to, to reach the intersection. When the car
to the left is closer than the acceptable lag we will slow to a stop and yield to the other
car, speedup = 3. When we are yielding we start looking for an acceptable gap so we can
drive into the roundabout, speedup = 4.

Once the speedup is defined, we act accordingly. If speeding = 1, we will accel-
erate. To do this we add the product of accel, the acceleration in ft/sec’ and the time that
has passed since last we checked, deltaT to backcar’s speed. Next, we check backcar’s
speed. if more than the desired speed, we set the speed to the desired speed. When
speedup is 2, the car must slow because it is getting too close to the car in front of it.
This is done by subtracting the product of modaccel, the acceleration in ft/sec’ and the
time that has passed since last we checked deltaT from backcar’s speed. Modaccel is the
modified acceleration of the car. This takes in account how close the two cars are and the
difference in their speeds. Therefore, when one car is “coming up fast” to a slow car it
will brake harder. Again, we check the new speed, if it is less than O it is set to 0. A
speedup of 3 means that the car has to yield. This is the same processes of slowing down
but the yield variable is set to true, to know that the car is yielding. On a speedup of a 4,
the driver give it a little higher acceleration so the car will join traffic smoothly.

MoveCars —

The procedure MoveCars has been split into two sub-procedures: SwitchSegments, which
moves the cars along, calls adjust speeds and switches the segments the cars are on when
necessary; and DrawCars, which draws and erases the cars as they move around the traf-
fic circle.

SwitchSegments loops through all the “active” cars (the cars with their active
property set to true). It calls AdjustSpeeds for every one, and advances the cars along the
segments. It does the latter using the equation: myCars(i).locationf = myCars(i).locationf
+ myCars(i).speed * deltaT, and: myCars(i).locationb = myCars(i).locationb + my-
Cars(i).speed * deltaT. This moves both the front and rear of the car the distance the car
would have traveled in one timestep. Therefore, when we multiply the car’s speed with
the elapsed time we get the distance the car has actually gone.

21

If either part of the car’s location becomes larger than the length of the segment it
is on, then the car has moved onto the next segment and must be treated accordingly.
First, the carsIn array for thisseg must be updated. When that is done, we check to see if
the car is leaving the simulation, in which case nextseg equals negative one. Ifit is, then
the car is made inactive, New Property is set to be true, and it is erased so that it does not
leave a “blip” on the screen. We also call the procedure FindDelayTime at this point.
This uses a nested case statement to find the proper cell in the MSFlexGrid control. Once
found, it will update the average delay (see Figure 14). If the car is not leaving the simu-
lation, then we must update the carsIn array of nextseg. After that, we call Find-
NextSegment to find the new nextseg, and correct the car’s location so it will fit its new
segment.

The animation is the apparent motion of our drawings. In actuality the drawings
are NOt MOVING. (e ; —— e
In the traffic cir- | hltadibb—— =
cle program, the S
cars, are being
drawn and erased
and drawn again |
in a different =
place, creating |
the illusion of
motion. Initially,
the cars were just
round dots.
When we ex-
tended them into
lines, we had |
trouble orienting
them. The cur-
rent method of
drawing the cars
is by drawing a
line from the
front of the car to
the back of the car. This helps to make the vehicle appear to be making smooth turns.

DrawCars loops through all the “active cars”, and will find their new x and y co-
ordinates, measured at the two ends of the car. It does this by finding the endpoints of the
segment the car is on and interpolating the car’s coordinates using the coordinates of the
endpoints and the car’s location. It will then find the angle of the segment, theta, and the
car’s endpoints as described above. After setting the draw width to the width of the car,
it will draw the car using Visual Basic’s line method. If the car’s new property is not set
to true then DrawCars will erase the old drawing of the car at its old position. If it were
set to true then DrawCars would do nothing except set the new property to false, because
there is no old drawing to erase. Lastly, DrawCars will store the coordinates of the car’s
endpoints so it can erase it during the next time step.

Figure 14 — Mean Time of Traffic

22

